A shared language for product teams to build usable, intelligent and safe GenAI experiences beyond just the modelGenerative AI introduces a new way for humans to interact with systems by focusing on intent-based outcome specification. GenAI introduces novel challenges because its outputs are probabilistic, requires understanding of variability, memory, errors, hallucinations and malicious use which brings an essential need to build principles and design patterns as described by IBM.Moreover, any AI product is a layered system where LLM is just one ingredient and memory, orchestration, tool extensions, UX and agentic user-flows builds the real magic!This article is my research and documentation of evolving GenAI design patterns that provide a shared language for product managers, data scientists, and interaction designers to create products that are human-centred, trustworthy and safe. By applying these patterns, we can bridge the gap between user needs, technical capabilities and product development process.Here are 21 GenAI UX patternsGenAI or no GenAIConvert user needs to data needsAugment or automateDefine level of automationProgressive AI adoptionLeverage mental modelsConvey product limitsDisplay chain of thought (CoT)Leverage multiple outputsProvide data sourcesConvey model confidenceDesign for memory and recallProvide contextual input parametersDesign for coPilot, co-Editing or partial automationDefine user controls for AutomationDesign for user input error statesDesign for AI system error statesDesign to capture user feedbackDesign for model evaluationDesign for AI safety guardrailsCommunicate data privacy and controls1. GenAI or no GenAIEvaluate whether GenAI improves UX or introduces complexity. Often, heuristic-based (IF/Else) solutions are easier to build and maintain.Scenarios when GenAI is beneficialTasks that are open-ended, creative and augments user.E.g., writing prompts, summarizing notes, drafting replies.Creating or transforming complex outputs (e.g., images, video, code).E.g., converting a sketch into website code.Where structured UX fails to capture user intent.Scenarios when GenAI should be avoidedOutcomes that must be precise, auditable or deterministic. E.g., Tax forms or legal contracts.Users expect clear and consistent information.E.g. Open source software documentationHow to use this patternDetermine the friction points in the customer journeyAssess technology feasibility: Determine if AI can address the friction point. Evaluate scale, dataset availability, error risk assessment and economic ROI.Validate user expectations: – Determine if the AI solution erodes user expectations by evaluating whether the system augments human effort or replaces it entirely, as outlined in pattern 3, Augment vs. automate. – Determine if AI solution erodes pattern 6, Mental models2. Convert user needs to data needsThis pattern ensures GenAI development begins with user intent and data model required to achieve that. GenAI systems are only as good as the data they’re trained on. But real users don’t speak in rows and columns, they express goals, frustrations, and behaviours. If teams fail to translate user needs into structured, model-ready inputs, the resulting system or product may optimise for the wrong outcomes and thus user churn.How to use this patternCollaborate as a cross-functional team of PMs, Product designers and Data Scientists and align on user problems worth solving.Define user needs by using triangulated research: Qualitative (Market Reports, Surveys or Questionnaires) + Quantitative (User Interviews, Observational studies) + Emergent (Product reviews, Social listening etc.) and synthesising user insights using JTBD framework, Empathy Map to visualise user emotions and perspectives. Value Proposition Canvas to align user gains and pains with featuresDefine data needs and documentation by selecting a suitable data model, perform gap analysis and iteratively refine data model as needed. Once you understand the why, translate it into the what for the model. What features, labels, examples, and contexts will your AI model need to learn this behaviour? Use structured collaboration to figure out.3. Augment vs automateOne of the critical decisions in GenAI apps is whether to fully automate a task or to augment human capability. Use this pattern to to align with user intent and control preferences with the technology.Automation is best for tasks users prefer to delegate especially when they are tedious, time-consuming or unsafe. E.g., Intercom FinAI automatically summarizes long email threads into internal notes, saving time on repetitive, low-value tasks.Augmentation enhances tasks users want to remain involved in by increasing efficiency, increase creativity and control. E.g., Magenta Studio in Abelton support creative controls to manipulate and create new music.How to use this patternTo select the best approach, evaluate user needs and expectations using research synthesis tools like empathy map (visualise user emotions and perspectives) and value proposition canvas (to understand user gains and pains)Test and validate if the approach erodes user experience or enhances it.4. Define level of automationIn AI systems, automation refers to how much control is delegated to the AI vs user. This is a strategic UX pattern to decide degree of automation based upon user pain-point, context scenarios and expectation from the product.Levels of automationNo automation (AI assists but user decides)The AI system provides assistance and suggestions to the user but requires the user to make all the decisions. E.g., Grammarly highlights grammar issues but the user accepts or rejects corrections.Partial automation/ co-pilot/ co-editor (AI acts with user oversight)The AI initiates actions or generates content, but the user reviews or intervenes as needed. E.g., GitHub Copilot suggest code that developers can accept, modify, or ignore.Full automation (AI acts independently)The AI system performs tasks without user intervention, often based on predefined rules, tools and triggers. Full automation in GenAI are often referred to as Agentic systems. E.g., Ema can autonomously plan and execute multi-step tasks like researching competitors, generating a report and emailing it without user prompts or intervention at each step.How to use this patternEvaluate user pain point to be automated and risk involved: Automating tasks is most effective when the associated risk is low without severe consequences in case of failure. Low-risk tasks such as sending automated reminders, promotional emails, filtering spam emails or processing routine customer queries can be automated with minimal downside while saving time and resources. High-risk tasks such as making medical diagnoses, sending business-critical emails, or executing financial trades requires careful oversight due to the potential for significant harm if errors occur.Evaluate and design for particular automation level: Evaluate if user pain point should fall under — No Automation, Partial Automation or Full Automation based upon user expectations and goals.Define user controls for automation (refer pattern 15)5. Progressive GenAI adoptionWhen users first encounter a product built on new technology, they often wonder what the system can and can’t do, how it works and how they should interact with it.This pattern offers multi-dimensional strategy to help user onboard an AI product or feature, mitigate errors, aligns with user readiness to deliver an informed and human-centered UX.How to use this patternThis pattern is a culmination of many other patternsFocus on communicating benefits from the start: Avoid diving into details about the technology and highlight how the AI brings new value.Simplify the onboarding experience Let users experience the system’s value before asking data-sharing preferences, give instant access to basic AI features first. Encourage users to sign up later to unlock advanced AI features or share more details. E.g., Adobe FireFly progressively onboards user with basic to advance AI featuresDefine level of automation (refer pattern 4) and gradually increase autonomy or complexity.Provide explainability and trust by designing for errors (refer pattern 16 and 17).Communicate data privacy and controls (refer pattern 21) to clearly convey how user data is collected, stored, processed and protected.6. Leverage mental modelsMental models help user predict how a system (web, application or other kind of product) will work and, therefore, influence how they interact with an interface. When a product aligns with a user’s existing mental models, it feels intuitive and easy to adopt. When it clashes, it can cause frustration, confusion, or abandonment.E.g. Github Copilot builds upon developers’ mental models from traditional code autocomplete, easing the transition to AI-powered code suggestionsE.g. Adobe Photoshop builds upon the familiar approach of extending an image using rectangular controls by integrating its Generative Fill feature, which intelligently fills the newly created space.How to use this patternIdentifying and build upon existing mental models by questioningWhat is the user journey and what is user trying to do?What mental models might already be in place?Does this product break any intuitive patterns of cause and effect?Are you breaking an existing mental model? If yes, clearly explain how and why. Good onboarding, microcopy, and visual cues can help bridge the gap.7. Convey product limitsThis pattern involves clearly conveying what an AI model can and cannot do, including its knowledge boundaries, capabilities and limitations.It is helpful to builds user trust, sets appropriate expectations, prevents misuse, and reduces frustration when the model fails or behaves unexpectedly.How to use this patternExplicitly state model limitations: Show contextual cues for outdated knowledge or lack of real-time data. E.g., Claude states its knowledge cutoff when the question falls outside its knowledge domainProvide fallbacks or escalation options when the model cannot provide a suitable output. E.g., Amazon Rufus when asked about something unrelated to shopping, says “it doesn’t have access to factual information and, I can only assists with shopping related questions and requests”Make limitations visible in product marketing, onboarding, tooltips or response disclaimers.8. Display chain of thought (CoT)In AI systems, chain-of-thought (CoT) prompting technique enhances the model’s ability to solve complex problems by mimicking a more structured, step-by-step thought process like that of a human.CoT display is a UX pattern that improves transparency by revealing how the AI arrived at its conclusions. This fosters user trust, supports interpretability, and opens up space for user feedback especially in high-stakes or ambiguous scenarios.E.g., Perplexity enhances transparency by displaying its processing steps helping
Related Posts

Technical Analysis: 4 Stocks with signs of death crossovers to keep an eye on

HDFC Bank & 3 other fundamentally strong stocks trading above 200 DMA to keep an eye on

Falling Channel Breakout: Multibagger NBFC Stock Shows Bullish Momentum on Daily Chart

4 Fundamentally strong stocks to buy for an upside potential of up to 36%; Do you hold any?
